Spatial regularity of InAs-GaAs quantum dots: quantifying the dependence of lateral ordering on growth rate

نویسندگان

  • T. Konishi
  • E. Clarke
  • C. W. Burrows
  • J. J. Bomphrey
  • R. Murray
  • G. R. Bell
چکیده

The lateral ordering of arrays of self-assembled InAs-GaAs quantum dots (QDs) has been quantified as a function of growth rate, using the Hopkins-Skellam index (HSI). Coherent QD arrays have a spatial distribution which is neither random nor ordered, but intermediate. The lateral ordering improves as the growth rate is increased and can be explained by more spatially regular nucleation as the QD density increases. By contrast, large and irregular 3D islands are distributed randomly on the surface. This is consistent with a random selection of the mature QDs relaxing by dislocation nucleation at a later stage in the growth, independently of each QD's surroundings. In addition we explore the statistical variability of the HSI as a function of the number N of spatial points analysed, and we recommend N > 103 to reliably distinguish random from ordered arrays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

Ordering and shape of self-assembled InAs quantum dots on GaAs„001..

Quantitative grazing-incidence small-angle x-ray scattering experiments have been performed on self-assembled InAs quantum dots ~QDs! grown by molecular-beam epitaxy. We find pronounced nonspecular diffuse scattering satellite peaks with high diffraction orders, indicating a lateral ordering in the spatial positions of the InAs QDs. The mean-dot–dot distance and correlation lengths of the dot l...

متن کامل

Multi-scale ordering of self-assembled InAs/GaAs(001) quantum dots

Ordering phenomena related to the self-assembly of InAs quantum dots (QD) grown on GaAs(001) substrates are experimentally investigated on different length scales. On the shortest length-scale studied here, we examine the QD morphology and observe two types of QD shapes, i.e., pyramids and domes. Pyramids are elongated along the [1–10] directions and are bounded by {137} facets, while domes hav...

متن کامل

Wetting layer evolution and its temperature dependence during self-assembly of InAs/GaAs quantum dots

For InAs/GaAs(001) quantum dot (QD) system, the wetting layer (WL) evolution and its temperature dependence were studied using reflectance difference spectroscopy and were analyzed with a rate equation model. WL thicknesses showed a monotonic increase at relatively low growth temperatures but showed an initial increase and then decrease at higher temperatures, which were unexpected from a therm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017